讲座

Germline P granules are liquid droplets that localize by controlled dissolution / condensation :细胞内通过“相分离”,可以提供一种特定的方式让细胞内的特定分子聚集起来,从而在“混乱的”细胞内部形成一定“秩序”,为困扰了大家多年的问题,提供了全新的思路。近几年的研究表明,**液-液相分离**(LLPS:liquid-liquid phase separation)可能是细胞形成无膜细胞器的物理化学基础,比如细胞内的p granule, nucleolar, stress granule等


https://pic3.zhimg.com/80/v2-27bec83334f2a62e903cd23e4229f972_720w.jpg

图2:Schematic Phase Diagram

Untitled







应用高分子化学来指导相分离研究的可行性及局限性

液液相分离研究的目标之一,是建立能够解释和预测大分子相分离现象的理论体系,并通过一级序列预测相分离的饱和浓度、刺激因素、液滴状态。高分子化学中的弗洛里赫金斯理论描述的是由焓介导的均聚合物从贫溶剂中析出的化学基础,其扩展理论考虑到了这一过程中的静电力作用。无规相近似方法则仅仅考虑了带电氨基酸的序列特征对杂聚体的形成的影响。此外,通过近似模拟也可以对相分离现象的机制进行进一步发掘:对单分子蛋白的模拟已能够较准确的说明其序列和功能间的关系,然而对成百上千个分子构成的相分离现象的建模及分析仍是目前的难点之一。对多组分相分离系统的粗粒化模拟初步解释了多层无膜细胞器如核仁形成的物理机制:蛋白-蛋白间、蛋白-RNA间的相互作用由序列决定;而不同细胞组分之间的相互作用呈互斥或亲和的状态,则可最终导致非随机的多层结构的形成。

算法模拟及理论体系可作为相分离现象实验数据的有力补充。反之,体内相分离现象的实验描述可作为算法模拟的数据库、并从中产生能够描述多分子复杂相分离现象的新的理论。


相分离到底意味着什么?研究相分离生物学功能

相分离研究的重点还是在于对其生物学功能的阐述

  1. LLPS可以感知环境的变化,并对环境的变化做出快速响应。这种响应比通过细胞内的转录以及翻译过程更加快速。目前的一些研究已经证明,LLPS可以感知温度以及pH, 另外,还可以用于感知细胞内外源的DNA(cGAS相分离)
  2. LLPS可以用来调节相关蛋白在细胞内的浓度。LLPS可以将高浓度的蛋白以液滴的形式储存起来,在细胞需要的时候将该蛋白释放到细胞环境中。
  3. LLPS可以形成局部的高浓度蛋白,从而激活一些生化反应,激活相关信号转导途径以及促进细胞骨架的形成。
  4. LLPS可以将一些蛋白与其底物隔离,从而抑制细胞内的一些生化反应过程。
  5. LLPS可以介导一些蛋白定位到已经存在的一些无膜包裹的细胞器中。
  6. LLPS的特殊结构可能对于细胞的形态起着重要作用。
  7. LLPS可以介导形成一些孔状结构,比如核孔。

https://pic1.zhimg.com/80/v2-4fbec688f75d811010b335c19f7fc49c_720w.jpg