Untitled

三代测序:三代测序技术是指单分子测序技术,在测序时,不需要经过PCR扩增,实现了对每一条DNA分子的单独测序,也叫单分子实时DNA测序。主要可以分为单分子荧光测序和纳米孔测序。

(1)单分子荧光测序技术

代表是美国螺旋生物(Helicos)的SMS技术和美国太平洋生物(Pacific Bioscience)的SMRT技术。其通过将脱氧核苷酸用荧光标记,实时地记录荧光的强度变化。当荧光基团被掺入DNA链的时候,它的荧光就同时能在DNA链上探测到。当它与DNA链形成化学键的时候,它的荧光基团就被DNA聚合酶切除,荧光消失。这种荧光标记的脱氧核苷酸不会影响DNA聚合酶的活性,并且在荧光被切除之后,合成的DNA链和天然的DNA链完全一样

测序过程包括文库构建和上机两步。文库构建是将长片段DNA分子与测序接头连接成茎环结构,然后加上与接头互补的测序引物及DNA聚合酶。上机测序是将构建好的文库复合物载入SMRT Cell的纳米孔中,通常一个纳米孔固定一个DNA分子,DNA聚合酶通过共价连接的方式固定在纳米孔底部。

Untitled

Untitled

PacBio SMRT技术其实也应用了边合成边测序的思想,并以SMRT芯片为测序载体。基本原理是: DNA聚合酶和模板结合,4色荧光标记 4 种碱基(即是dNTP),在碱基配对阶段,不同碱基的加入,会发出不同光,根据光的波长与峰值可判断进入的碱基类型。同时这个 DNA 聚合酶是实现超长读长的关键之一,读长主要跟酶的活性保持有关,它主要受激光对其造成的损伤所影响。

(2)纳米孔测序技术

代表是英国牛津纳米孔公司。新型纳米孔测序法(nanopore sequencing)是采用电泳技术,借助电泳驱动单个分子逐一通过纳米孔 来实现测序的。由于纳米孔的直径非常细小,仅允许单个核酸聚合物通过,四种核苷酸的空间构象不一样,因此当它们通过纳米孔时,所引起的电流变化不一样。由多个核苷酸组成的DNA或RNA链通过纳米孔时,检测通过纳米孔电流的强度变化,即可判断通过的核苷酸类型,从而进行实时测序。

基本原理:当纳米孔充满导电液时,两端加上一定电压,分子模板通过纳米孔生成可测量电流。纳米孔的直径只能容纳一个核苷酸,单链模板就会在电场作用下依次通过纳米孔而引起电流强度变化,通过检测相应的电流峰判断碱基,实现实时测序。

主要特点是:读长很长,大约在几十kb,甚至100 kb;错误率目前介于1%至4%,且是随机错误,而不是聚集在读取的两端;数据可实时读取;通量很高(30x人类基因组有望在一天内完成);起始DNA在测序过程中不被破坏;以及样品制备简单又便宜。理论上,它也能直接测序RNA。   纳米孔单分子测序计算还有另一大特点,它能够直接读取出甲基化的胞嘧啶,而不必像传统方法那样对基因组进行bisulfite处理。这对于在基因组水平直接研究表观遗传相关现象有极大的帮助。并且改方法的测序准确性可达99.8%,而且一旦发现测序错误也能较容易地进行纠正。

Untitled